Binomische Formeln: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
| Zeile 36: | Zeile 36: | ||
Auflösung: | Auflösung: | ||
<math>(\frac{1}{2} x + \frac{3}{4} y)^2 = (\frac{1}{2} x)^2 + 2* \frac{1}{2} x* \frac{3}{4} y + (\frac{3}{4} y)^2</math> --> In der Mitte kann die 2 mit der 2 aus 1/2 gekürzt werden! --> x * 3/4 y | <math>(\frac{1}{2} x + \frac{3}{4} y)^2 = (\frac{1}{2} x)^2 + 2* \frac{1}{2} x* \frac{3}{4} y + (\frac{3}{4} y)^2</math> --> In der Mitte kann die 2 mit der 2 aus 1/2 gekürzt werden! --> 1 x * 3/4 y | ||
<math>= (\frac{1}{2})^2*x^2 + \frac{3}{4}x y + (\frac{3}{4})*y^2</math> --> Bruchrechenregeln nicht vergessen! --> Zähler und Nenner müssen potenziert werden! | <math>= (\frac{1}{2})^2*x^2 + \frac{3}{4}x y + (\frac{3}{4})*y^2</math> --> Bruchrechenregeln nicht vergessen! --> Zähler und Nenner müssen potenziert werden! | ||
| Zeile 44: | Zeile 44: | ||
Und wieder hat sich die vermutete Struktur bewahrheitet:) | Und wieder hat sich die vermutete Struktur bewahrheitet:) | ||
=== '''<u>Zweite binomische Formel</u>''' === | |||
Zweite binomische Formel | Erstes Beispiel: | ||
Version vom 20. September 2024, 21:44 Uhr
Kurzer Recap der binomischen Formeln (zum Glück müssen wir die nicht herleiten oder gar beweisen...).
Übersicht Formeln
Erste binomische Formel:
Zweite binomische Formel:
Dritte binomische Formel:
Einfache Beispiele
Erste binomische Formel
Erstes Beispiel:
Gegeben ist folgender Term (egal ob alleinstehend oder als Teil einer Funktion):
Hier wird also die erste binomische Formel angewandt.
Anhand der Term-Struktur kann man schon ablesen, dass das Ergebnis ungefähr so aussehen wird:
Lösen wir das Ganze also:
Wie man sieht hat sich die anfänglich vermutete Struktur bestätigt.
Zweites Beispiel:
Gegeben ist -> Vermutetes Aussehen:
Auflösung:
--> In der Mitte kann die 2 mit der 2 aus 1/2 gekürzt werden! --> 1 x * 3/4 y
--> Bruchrechenregeln nicht vergessen! --> Zähler und Nenner müssen potenziert werden!
Und wieder hat sich die vermutete Struktur bewahrheitet:)
Zweite binomische Formel
Erstes Beispiel: